
Unity
Introduction

CSC 631/831

Spring ‘14



• Game Engine

• A complex system designed for the development of 
both 3D and 2D video games

• Multiple components work together to bring a game to 
life:

• Graphics Rendering Engine

• Physics Engine

• Scripting

• Etc.

What is Unity?



• Cross-Platform

• PC & Mac (Windows, OS X, etc.)

• Mobile Devices (iOS, Android, etc.)

• Game Consoles (PlayStation, Xbox, etc.)

• Editor w/ Built-in IDE

• C# using MonoDevelop

• JavaScript / UnityScript (Not Used)

What is Unity? (cont’d.)



• Graphics Rendering Engine

• Responsible for taking graphical data of models and 
generating a visual image to the screen

• 3D to 2D conversion

• Physics Engine

• Simulate physics to allow object interactions

• Collision detection

Game Engine Core



• Scripting

• Instructs the game engine to perform certain tasks

• Respond to user inputs

• Create and handle events

• Control object behaviors

• Other

• Sound, Animations, Networking and more

Game Engine Core (cont’d.)



• Unity is strictly used for development of the Game 
Client, which is 1 of 2 major components

• Game Client will be required to connect to a Game 
Server, which will be discussed at a later point

• Game Client is responsible for:

• Displaying visuals

• Respond to user inputs

• Act out the game logic

How will this be used?



Architecture Design



Scene Hierarchy

	

Scene 

GameObjects 

Prefabs 

Components

s 



• What is a scene?

• “Level” container that contain objects for your game

• GameObjects

• Prefabs/Models

• Scripts

• Etc.

• Can just only contain GUI menus as well

• At least one is required to function properly

Scene



• In its most basic form, its just an “empty” container

• Serves no use unless special properties called 
Components are added into it

• No GameObjects are truly empty because of the 
Transform component

• Defines the position, rotation, and scale

• Every object in your game is a GameObject

GameObject



• Defines the behavior of every GameObject

• Gives GameObject purpose

• There are many different components

• Transform

• Camera

• Scripts

• Colliders

• Etc.

Components



• Type of asset

• Reusable GameObject

• Unity creates an instance of it whenever added to the 
scene

• Modifying the components of a Prefab changes the 
instances

• Normally is made up of a model along with other 
components to be loaded multiple times

Prefab



• Example:

• Elephant Prefab

• Transform

• Collider

• Collision purposes

• Elephant Model

• Materials/Textures

• Scripts

• AI, etc.

Prefab (cont’d.)



• Adds another level of behavior in GameObjects

• Dictate game logic

• Every individual script is its own Component

• Written in C#

• Also in JavaScript/UnityScript

• Not in this class

Script



Unity Editor



• Download Unity

• http://unity3d.com/unity/download

• Install Unity

• Installation should be very straightforward

• If asked, please skip the 30 day trial of Unity Pro 
since it may come to use later in the semester, if 
needed

Getting Started

http://unity3d.com/unity/download


Getting Started (cont’d.)

• You’ll need to create a 
new project

• File > New Project

• Skip the packages > 
Create Project



• Your first assignment will require you to open an 
existing project instead of creating a new one

Getting Started (cont’d.)



• Just a basic example to get started

• We’ll be doing the following:

• Setting up a Scene

• Adding a GameObject

• Display “Hello World!” using a C# Script

• Console

• In-Game

Hello World!



• By default, a scene is already created for you

• Camera will always be the first object in the scene

• First thing you should do is save the current scene by 
giving it a name

• You’ll need to create new scenes whenever you need 
to switch from one to another

• For example:

• Switch from Login to Level

Setting Up Scene



Setting Up Scene (cont’d.)



• For your game to do anything, you need a Script, but 
before you can add one, you’ll also need a 
GameObject attached to the Scene

• When your game runs, Unity will reach out to all 
GameObjects attached to the Scene

• As it goes through your GameObjects, it’ll pick up all 
its Components as well as any Scripts attached to it

Adding GameObject



• In the menu, select GameObject > Create Empty

• A GameObject named “GameObject” will be 
inserted into your scene

• For this demonstration, this GameObject will need 
to attach a script component either by:

• Selecting GameObject > Add Component

• Dragging a pre-existing script from the Project tab to 
the GameObject

Adding GameObject (cont’d.)



• Programming language similar to Java

• If you know Java, C# is really easy to learn

• Shares almost the exact syntax

• Few exceptions when using C# with Unity:

• Component-based scripting doesn’t follow the 
traditional use of constructors

• Namespaces are not used in Unity

What is C#?



• MonoDevelop provided by Unity is one way to code 
for it

• For Windows users, MS Visual Studio is another 
option if you don’t prefer the built-in IDE

What is C#? (cont’d.)



• Once a script is created, you’ll need to open it with 
Unity’s built-in IDE called MonoDevelop

Hello World! Script

using UnityEngine;
using System.Collections;

public class HelloWorld : MonoBehaviour {

// Use this for initialization
void Start () {

}

// Update is called once per frame
void Update () {

}
}



• MonoBehaviour

• All C# classes requiring Unity methods will have to 
extend from this

• Required whenever a script is treated as a component

• Contains important methods such as:

• Start()

• Update()

• Also, Awake() and others

MonoBehaviour Class



• Awake() Method

• Script components do not use constructors

• This method is called by Unity to initialize variables 
before running, similar to a constructor

• Start() Method

• Similar to Awake() except that it’ll run once the engine 
kicks in

• In most cases, you can just use Start() over Awake()

Awake() and Start() Methods



• Update() Method

• Once the engine is running, any methods named 
Update() will be called once per frame

• This is where most of your logic code belongs

• For example:

• Character needs to move along a path

• Your Update() method will include code to make it walk a 
short distance based on speed

Update() Method



using UnityEngine;
using System.Collections;

public class HelloWorld : MonoBehaviour {

// Use this for initialization
void Start () {

Debug.Log("Hello World!");
}

// Update is called once per frame
void Update () {

}
}

Output “Hello World!” (Once)



Output “Hello World!” (Once)



• Common method used to output strings to Unity 
Editor’s console

• This is a Unity method, which is similar to C#’s 
Console.WriteLine()

• Similar to System.out.println() from Java

Debug.Log() Method



using UnityEngine;
using System.Collections;

public class HelloWorld : MonoBehaviour {

// Use this for initialization
void Start () {

}

// Update is called once per frame
void Update () {

Debug.Log("Hello World!");
}

}

Output “Hello World!” (Multiple)



using UnityEngine;
using System.Collections;

public class HelloWorld : MonoBehaviour {

// Use this for initialization
void Start () {

Debug.Log("Hello World!");
}

// Update is called once per frame
void Update () {

}

void OnGUI () {
GUI.Label(new Rect(30, 30, 100, 100), "Hello World!");

}
}

Display “Hello World!”



• OnGUI() Method

• Similar to Update() method, which is called once per 
frame

• This method is reserved for drawing GUI elements on 
the screen once your game is running

• GUI Elements:

• Windows

• Boxes

• Labels, Etc.

OnGUI() Method



• There’s a method for every GUI element you’d like to 
create whether that’s for a box, window, label, etc.

• One Example:

• GUI.Label()

• Used to draw a simple line of text on the screen

GUI Methods



• Every GUI element requires use of a Rect structure 
using the following constructor:

• Rect(x, y, width, height)

• The rectangle must be large enough to display its 
contents otherwise there will be a cutoff.

Rect (Rectangle)



Display “Hello World!”



• Unity User Manual

• http://docs.unity3d.com/Documentation/Manual/inde
x.html

• Unity Scripting Reference

• http://docs.unity3d.com/Documentation/ScriptRefere
nce/index.html

Online Resources

http://docs.unity3d.com/Documentation/Manual/index.html
http://docs.unity3d.com/Documentation/ScriptReference/index.html

