b\

Unity

Introduction

CSC 631/831
Spring ‘14

B

* Game Engine

* A complex system designed for the development of
both 3D and 2D video games

* Multiple components work together to bring a game to
life:
 Graphics Rendering Engine
* Physics Engine
* Scripting
* Etc.

What is Unity? (cont’d.)
\

* Cross-Platform

« PC & Mac (Windows, OS X, etc.)

* Mobile Devices (i0S, Android, etc.)

« Game Consoles (PlayStation, Xbox, etc.)
» Editor w/ Built-in IDE

* C# using MonoDevelop

e JavaScript / UnityScript (Not Used)

Game Engine Core

B

* Graphics Rendering Engine

* Responsible for taking graphical data of models and
generating a visual image to the screen

* 3D to 2D conversion

* Physics Engine
 Simulate physics to allow object interactions
 Collision detection

Game Engine Core (cont’d.)

B

* Instructs the game engine to perform certain tasks

* Scripting

* Respond to user inputs
* Create and handle events
* Control object behaviors

e Other

* Sound, Animations, Networking and more

How will this be used?

B

 Unity is strictly used for development of the Game
Client, which is 1 of 2 major components

* Game Client will be required to connect to a Game
Server, which will be discussed at a later point

* Game Client is responsible for:
* Displaying visuals
* Respond to user inputs

* Act out the game logic

Architecture Design

>
-2
O
Yo
1]
e
S
ar
b
o
)
O
v

B

* What is a scene?

* “Level” container that contain objects for your game
* GameObjects
* Prefabs/Models
* Scripts
* Etc.
* (Can just only contain GUI menus as well

At least one is required to function properly

GameObject

B

In its most basic form, its just an “empty” container

Serves no use unless special properties called
Components are added into it

No GameODbjects are truly empty because of the
Transform component

* Defines the position, rotation, and scale

Every object in your game is a GameObject

Components

B

* Defines the behavior of every GameQObject

* Gives GameObject purpose
* There are many different components

e Transform

e Camera

Scripts

Colliders
 Etc.

Type of asset
Reusable GameObject

Unity creates an instance of it whenever added to the
scene

Modifying the components of a Prefab changes the
Instances

Normally is made up of a model along with other
components to be loaded multiple times

Prefab (cont’d.)

B

* Example:
* Elephant Prefab

¢ Transform
* Collider
 Collision purposes
* Elephant Model
* Materials/Textures
* Scripts
Al etc.

B

Adds another level of behavior in GameObjects
Dictate game logic

Every individual script is its own Component
Written in C#

* Also in JavaScript/UnityScript

 Not in this class

006
O S
Hierarchy

Main Camera

MainObject

Project

W Favorites
Q All Materials
Q Al Models
Q All Prefabs
O, All Scripts

5 Assets
85 Database

85 Images
= Textures

£5 Materials

5 Newwork

#5 Request

=3 Center Local

.= Hscene

Assets

= Da

#5 Fonts

U Game

&5 Images

5 Materials
rk

5 Plugi

5 Prefabs

85 Resources

B9 Scenes

5 Scripts

Unity Editor

« Game.unity - WoB_Client_Basic - PC, Mac & Linux Standalone

>

>

Layers
-= | @ Inspectar 2 N
!f ¥ MainObject
Tag [Unt
Transform
Position
Rotation
Scale

¥ Main (Script)
Script @ Main

Add Component

Getting Started

B

* Download Unity

* http://unity3d.com/unity/download
e Install Unity
* Installation should be very straightforward

* If asked, please skip the 30 day trial of Unity Pro
since it may come to use later in the semester, if
needed

http://unity3d.com/unity/download

Getting Started (cont’d.)

—

800 Project Wizard (4.3.2f1)

 You'll need to create a — i .
.
neW prOJECt Project Directory:

| | ser.. |

* File > New Project

Import the following packages:

| Character Contraller.unityPackage
| Glass Refraction (Pro Only).unityPackage
| Image Effects (Pro Only).unityPackage

» Skip the packages > |
Create Project |

F C C
Eu::u::
= - =
oo
m 10N
mﬂlg
]
E m
S w Z
£ E w
= 2 e
o
n%E
23 =
b=
m;ﬁ
e R
e
® o
)

| Physic Materials.unityPackage

3
=)
-]
m
s}
[=]
-y
L
=
=
=4
fu
&l
a1
(4
0
(-]

| Scripts.unityPackage

un
z
(=
(=}
b4
m
i
=
3.
=
-
|:0)
m
&
w]
m

| |Standard Assets (Mobile).unityPackage

Set up defaults for: | 3D + | Create Project

Getting Started (cont’d.)

B

* Your first assignment will require you to open an
existing project instead of creating a new one

Hello World!

B

* Just a basic example to get started

« We'll be doing the following:
* Setting up a Scene

* Adding a GameObject
* Display “Hello World!” using a C# Script

* Console

e In-Game

Setting Up Scene

B

» By default, a scene is already created for you

» Camera will always be the first object in the scene

* First thing you should do is save the current scene by
giving it a name

* You'll need to create new scenes whenever you need
to switch from one to another

* For example:

* Switch from Login to Level

lierarchy

Main Camera

Proje

 Favorites

Q All Materials

£5 Assels

Setting Up Scene (cont’d.)

Assets

-
=t Came

€} Game.unity - Der

>

- PC, Mac & Linux Standalone

I |

O Inspect
T
-
Tag 'Mal
J Transform
Positior

Projec
Field w

Clipping Planes

Camera Preview

B ¥ GUiLayer
* ¥ Flare Layer
® ¥ Audio Listener

Add Component

Adding GameObject

B

 For your game to do anything, you need a Script, but
before you can add one, you'll also need a
GameObject attached to the Scene

* When your game runs, Unity will reach out to all
GameObjects attached to the Scene

 As it goes through your GameObjects, it'll pick up all
its Components as well as any Scripts attached to it

Adding GameObject (cont’d.)

B

* In the menu, select GameObject > Create Empty

* A GameObject named “GameObject” will be
inserted into your scene

* For this demonstration, this GameObject will need
to attach a script component either by:

* Selecting GameObject > Add Component

* Dragging a pre-existing script from the Project tab to
the GameObject

B

Programming language similar to Java

[f you know Java, C# is really easy to learn
Shares almost the exact syntax
Few exceptions when using C# with Unity:

* Component-based scripting doesn’t follow the
traditional use of constructors

« Namespaces are not used in Unity

What is C#? (cont'd.)

B

* MonoDevelop provided by Unity is one way to code
for it

* For Windows users, MS Visual Studio is another
option if you don't prefer the built-in IDE

Hello World! Script

B

Once a script is created, you'll need to open it with
Unity’s built-in IDE called MonoDevelop

using UnityEngine;
using System.Collections;

public class HelloWorld : MonoBehaviour {

// Use this(for initialization
void Start () {

}

dpdate is called once per frame
void Update ()

}

MonoBehaviour Class

B

e MonoBehaviour

» All C# classes requiring Unity methods will have to
extend from this

* Required whenever a script is treated as a component
* Contains important methods such as:

 Start()

 Update()

« Also, Awake() and others

Awake() and Start() Methods

B

« Awake() Method

* Script components do not use constructors

* This method is called by Unity to initialize variables
before running, similar to a constructor

 Start() Method

e Similar to Awake() except that it’ll run once the engine
kicks in

 In most cases, you can just use Start() over Awake()

Update() Method

B

» Update() Method

* Once the engine is running, any methods named
Update() will be called once per frame

* This is where most of your logic code belongs

* For example:
* Character needs to move along a path
* Your Update() method will include code to make it walk a
short distance based on speed

Output “Hello World!” (Once)

B

using System.Collections;

using UnityEngine;

public class HelloWorld : MonoBehaviour {

// Use this for initialization
void Start () {
Debug.Log("Hello World!");

J

Update is called once per frame
VOldp Update () {

}

Output “Hello World!” (Once)

Debug.Log() Method

B

* Common method used to output strings to Unity
Editor’s console

* This is a Unity method, which is similar to C#’s
Console.WriteLine()

e Similar to System.out.println() from Java

Output “Hello World!” (Multiple)

B

using System.Collections;

using UnityEngine;

public class HelloWorld : MonoBehaviour {

// Use this for initialization
void Start () {

J

dpdate is called once per frame
void Update ()
Debug.Log(' Hello World!");

Display “Hello World!”

using UnityEngine;
using System.Collections;

public class HelloWorld : MonoBehaviour {
// Use this for initialization

void Start () {
Debug.Log("Hello World!");

dpdate is called once per frame
void Update ()

}

void OnGUI () {
GUI.Label(new Rect(30, 30, 100, 100), "Hello World!");

OnGUI() Method

B

* OnGUI() Method

* Similar to Update() method, which is called once per
frame

* This method is reserved for drawing GUI elements on
the screen once your game is running

 GUI Elements:

« Windows

* Boxes
* Labels, Etc.

B

* There’s a method for every GUI element you'd like to
create whether that’s for a box, window, label, etc.

* One Example:
« GUILabel()

* Used to draw a simple line of text on the screen

Rect (Rectangle)

B

» Every GUI element requires use of a Rect structure
using the following constructor:
* Rect(x, y, width, height)

* The rectangle must be large enough to display its
contents otherwise there will be a cutoff.

Display “Hello World!”

Online Resources

B

* Unity User Manual

* http://docs.unity3d.com/Documentation/Manual/inde
x.html

 Unity Scripting Reference

* http://docs.unity3d.com/Documentation/ScriptRefere
nce/index.html

http://docs.unity3d.com/Documentation/Manual/index.html
http://docs.unity3d.com/Documentation/ScriptReference/index.html

